Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The ATLAS tile calorimeter (TileCal) is the hadronic sampling calorimeter covering the central region of the ATLAS detector at the Large Hadron Collider (LHC). This paper gives an overview of the calorimeter’s operation and performance during the years 2015–2018 (Run 2). In this period, ATLAS collected proton–proton collision data at a centre-of-mass energy of 13 TeV and the TileCal was 99.65% efficient for data-taking. The signal reconstruction, the calibration procedures, and the detector operational status are presented. The performance of two ATLAS trigger systems making use of TileCal information, the minimum-bias trigger scintillators and the tile muon trigger, is discussed. Studies of radiation effects allow the degradation of the output signals at the end of the LHC and HL-LHC operations to be estimated. Finally, the TileCal response to isolated muons, hadrons and jets from proton–proton collisions is presented. The energy and time calibration methods performed excellently, resulting in good stability and uniformity of the calorimeter response during Run 2. The setting of the energy scale was performed with an uncertainty of 2%. The results demonstrate that the performance is in accordance with specifications defined in the Technical Design Report.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            The associated production of Higgs and bosons via vector-boson fusion is highly sensitive to the relative sign of the Higgs boson couplings to and bosons. In this Letter, two searches for this process are presented, using of proton-proton collision data at recorded by the ATLAS detector at the LHC. The first search targets scenarios with opposite-sign couplings of the and bosons to the Higgs boson, while the second targets standard model-like scenarios with same-sign couplings. Both analyses consider Higgs boson decays into a pair of quarks and boson decays with an electron or muon. The data exclude the opposite-sign coupling hypothesis with a significance beyond , and the observed (expected) upper limit set on the cross section for vector-boson fusion production is 9.0 (8.7) times the standard model value at 95% confidence level. © 2024 CERN, for the ATLAS Collaboration2024CERNmore » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
